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High Enerqy Charged Particle Optics Computer Programs 

David C. Carey 

The computer programs TRANSPORT and TURTLE are described, 

with special emphasis on recent developments. TPANSPORT is a 

general matrix evaluation and fitting program. First and second- 

order transfer matrix elements, including those contributing 
. 

to time-of-flight differences can be evaluated. Matrix elements 

of both orders can be fit, separately or simultaneously. Floor 

coordinates of the beam line may be calculated and included in 

any fits. Tables of results of misalignments, including effects 

of bilinear terms can be produced. Fringe fields and pole face 

rotation angles of bending magnets may be included and also 

adjusted automatically during the fitting process to produce 

rectangular magnets. A great variety of output options is 

available. 

TURTLE is a Monte Carlo program used to simulate beam line 

performance. It includes second-order terms and aperture 

constraints. Replacable subroutines allow an unlimited variety 

of input beam distributions, scattering algorithms, variables 

which can be histoqrammed, and aperture shapes. Histograms of 

beam loss can also be produced. Rectangular zero-gradient bending 

magnets with proper circular trajectories, sagitta offsets, pole 

face rotation angles, and aperture constraints can be included. 

The effect of multipple components of quadrupoles up to 40 pole 

can be evaluated. 
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Introduction _---- 

A complete design of a bean line for transmission of charged 

particles involves two stages. First, one i-dust determine certain 

quantifiable characteristics that the beam line mnst possess, 

and produce a design which optimizes the conformance to these 

characteristics. Second, one must evaluate the performance Of 

the system produced. Abe latter nigh-t involve a determination 

of beam profiles, acceptancks, and effects of magnet imperfections. 

we describe here two computer program developed to achieve 

the two Purposes described above. A beam design, including all 

elemmt spacings md magnetic fields, in produced using the 

program TRANSPORT.' Once this design is achieved, it may be 

simulated using the mate Carlo program TURTLE. 2 The two program 

Use the same input data format making the transition from one 

to another quite simple. 

Both program are described in detail in their respective 

-UalSl'3, and, to some extent, in the published literature. 

Their use is sufficiently widespread so there is no point in 

oivina a ?!etailed description of either. For cowleteness, we 

give J. short description of each, with a greater elaboration of 

recent developments. Some of the more recent developments have 

been or will be published elsewhere. Others will appear only in 

this article. 



-3- 

TIWXSPORT - -, 

TRANSPORT is a general matrix evaluatiOn and fitting 

pr0g+.SKl. It can evaluate various matrices which represent the 

transmission of particles through a beam line, and va?zy the 

physical parameters of the beam line to fit elements of such 

matrices to desired values. A schematic illustration Of a 

beam line is shown in figure 1. 

TRANStiORT considers a beam line to be comprised of a set 

of magnetic eiements placed sequentially et intervals along 

an assumed reference trajectory. The reference trajectory 

is taken to be a path of a charged particle passing through 

idealized magnets (no fringing fields) end having the central 

design momentum of the beam line. Therefore, through a bending 

magnet, the reference trajectory is the arc of a circle, while 

through all other magnetic elements it is a straight line. 

The input data to TRANSPORT contain the initial floor WXdinateS 

end direction of the reference trajectory, end the sequence of 

elements comprising the beam line. The elements include both 

drift spaces and magnetic elements, which are specified by their 

lengths, magnetic fields, and other relevant quantities. 

TRANSPORT can then calculate the floor coordinates of the 

reference trajectory at the interface between any two elements. 

A local coordinate system is attached to each point on 

the reference trajectory. As a particle moves down the beam 
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line, its transverse position and direction of motion are 

referred to this local coordinate system. An illustration 

of this local coordinate system is shown in figure 2. A six 

component vector is used to describe a particle trajectory 

at a given position along the beam line, i.e. 

x 
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where: 

x = the horizontal displacement of the ray witb respect 

to the reference trajectory 

9 = the angle the ray makes is the horizontal plane with 

the reference trajectory 

y = the vertical displacement of the ray with respect to 

the reference trajectory 

.$ = the verticle angle the ray makes vith the reference 

trajectory 

1 = the longitudinal separation between the say and the 

central trajectory 

6 = Ap/p is the fractional imnentum deviation of the ray 

iron that of the reference trajectory. 



The value of this vector at any location is tie beam 

line may be determined from its initial value by means of a 

transfer matrix R, so that 

X(l) = R X(O) (2) 

where the arguments (0) and (1) indicate the initial location 

and the point of interest, respectively. The six by six 

matrix R takes on a simple form if the system has mid?lane 

symmetry, where all the magnetic ootentials are odd in the 

vertical coordinate. Then we have 

f xl 

61 

y1 
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= 

Rll R12 o 0 

R21 P-22 O O 
0 0 R33 R34 
0 0 R43 R44 

Rsl R52 O 0 
0 0 0 0 

(3) 

In all cases, whether or not we have midplane symmetry, al1 

entries in the fifth coluxm, except the fifth, and all entries 

in the sixth row, except the sixth, will be zero. Thus nothing 

affects the momentum, and the longitudinal separation affects 

'no transverse coordinate. TRANSPORT can print the transfer 

matrix at any or all locations in matrix format or in a single 

line which contains only those elements in the first four lows 

which survive midplane symmetry. 



The matrix formalism can be regarded as the first term 

in a Taylor's series and extended to second order via the 

equation 

Xi(l) = cRijXj (0) + ~TijkXj(OIX,$O) (4) 

j jk 

The second-order matrix elements which contribute to the 

transverse coordinates have been calculated by Brown, 4 and 

have previously been published. The terms which contribute 

to longitudinal separation have been derived by several 

interested parties, and have been' or will be published.6 

In accelerator and beam transport systems, the behavior 

of an individual particle is often of less concern than is 

the behavior of a bundle of particles (the beam), of which 

the individual particle is a member. Pn extension of the 

matrix algebra of eq. (2) provides a convenient means for 

defining and manipulating this beam. TRANSPORT assumes that 

the beam may be correctly represented in phase space by an 

ellipsoid in the six-dimensional coordinate system described 

above. Particles in a beam are assured to occupy the volume 

enclosed by the ellipsoid, each point representing a possible 

ray. The sum total of all phase points, the phase space wlcme, 

is comonly referred to as the "phase space" occupied by the 

beam. A diagram of a two-dimensional cross section of this 

six-dimensional ellipsoid is shown in figure 3. 
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The equation of the six-dimnsional ellipsoid is 

go-lx = 1 (5) 

where d is the beam or sigma matrix. some of whose elements 

are found in the illustration. The correlation terms r are 

given in term of the off-diagonal elements of o by 

Lli 
Qj = Lqyq 

(6) 

The ellipse at one location in the beam line can be transformd 

into one at another location by means of the transfer matrix 

between the two locations, so that 

aij = ~~~~~~~~~~~~~ 
k 

(71 

An alternate interpretation of the sigma matrix is that 

is provides the second moments of a six-dimensional Gaussian 

distribution. The fourth mments can then be calculated and 

second order term taken into account. The sigma matrix now 

transforms as 

Xi(l) = xTijkojk(Ol ('3 

jk 

oij(l) = ;RikRji’kr (0) + ’ x (z TiL(rkm(o)) (x Tjnm"ln(o)) 
Lm k n 



The distribution is no lancer an ellipsoid and the centroid 

at the final position is no longer the i?aag@ of the ce?!troid 

at the initial position. Nevertheless, the sigma matrix does 

provide an estimate of tie beam di;nensions ad is of use in 

determining the magnitude of the net contribution of second- 

order aberrations. The second order transformation of the 

sigma matrix has been described elsewhere. 7 

A number of the physic.?.!. parameters describing the 

magnets or their locations or orientations may be varied by 

the program. A list of elements which are physical or have 

parameters which may be varied is given in table 1, Almost 

all items require no explanation. The single possible 

exception is a bending magnet, whose configuration can 

sometimes be quite complicated. 

A bend magnet element specifies a sector bend magnet. 

where the field boundaries are infinitely sharp and form a 

plane perpendicular to the reference trajectory at the input 

and output faces of the magnet. A field boundary making an 

angle with the perpendicular plane is specified as a separate 

element which precedes or follows the magnet. The rotation 

of the field boundary acts as a quadrupole component which 

can affect the first-order transfer matrix. A qzadratic 

variation of the central field of a bend nagnet, or a curvature 

of its entrance or exit field bomdaries can contribute a 

sextupole component which will affect the second-order transfer 



matrix. A dia&m of a general bending maqnet is shown in 

figure 4. 

The values of the parameters to be varied will be found 

which will satisfy any user-imposed constraints. A variety 

of constraints is available and a list is given in table II. 

Any assort&t of constraints can be fit simultaneously by 

TRANSPORT, providing the configuration is physically possible. 

First- and second-order constraints may be mixed and all 

parameters describing magnetic elements or their intended 

location or orientation may be varied in either a first- or 

second-order run. The only exceptions are that parameters 

which affect only the second-order characteristics Of a beam 

may not be varied and second-order constraints may not be 

imposed in a first-orr?er run. Parameters directly describing 

the beam ellipse and misalignment parameters may be varied 

only in first order. 

The misalignment tolerances of the magnets in a beam line 

can also be determined by TP.A%PORT. Pie complete theory of 
9 magnet alignment tolerances has been given elsewhere and will 

be described briefly here. A picture of a misaligned bending 

magnet is shown in figure 5. 

The most immediate effect of the misalignment of a 

magnetic element is a displacement of the reference trajectory. 

This would add a term to equation (2) which was not dependent 

on the values of the initial coordinates of the trajectory. 
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However, many possible misalignments, such as the rotation of 

a quadrupole about its axis would not be included in such a 

term. We therefore add a second term which is bilinear in 

the extent of the misalignment and arrive at 

x(l) = RX(O) + Fin + GX['J)m (9) 

where m is a vector of misalignment parameters given by 

6X 

Bx 
6Y 

e 
Y 

62 

tez 

(101 

The six components indicate displacements and rotations with 

respect to the three axes of the reference coordinate system 

at the entrance face of the magnet. 

In TRANSPORT a number of possible elements or portions 

of the beam line my be misaligned. An individual element or 

section of a beam line can be misaiigned, and misalignments 

can be nexted. Also TRARSPORT can be instructed to misalign 

all quadrupoles and/or bending magnets by a given amount. 

The effects of misalignments are shown in the beam 

matrix. The misalignments may be of two types. A known 

misalignment of a magnet will produce a displacement of the 
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beam centroid. The new bean centroid and sigma matrix are 

given by 

St- Fm 

o(l) = Ro(0)RT + Go(0)mRT + Rc~('))~~GT + Go(O)mTGT (11) 

in uncertainty .in~position will not .affect the 'beam centroid, 

butwill produce an altereo beam ellipse given by 

o(l) = R,,(O)$ + F<mmT>FT + Go(0)<mmT>GT 

The matrix <mmT> represents an ellipsoid of uncertainty in 

the six-dimensional space of tisalignmsnt parameters. If the 

misalignments are uncorrelated this ellipsoid will be upright. 

If the initial dimensions of the beam ellipse are zero, then 

the beam matrix will represent the envelope of possible locations 

of the reference trajectory. 

The results of the misalignments may be represented in 

either the beam matrix or in a special misalignshsnt table. 

If the beam matrix is used, the results of the misalignment 

of all magnets in all coordinates will be lumped together, 

to give an aggregate result. The misalignment parameters 

may then he fit via constraints on the beam matrix. The 

misalignment table consists of altered facsimiles of the beam 

matrix, reproduced a number of times. If the misalignment 

table is used, then the results of misaligning ea.5 magnet in 

each coordinate can be shown individually. 
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TURTLE 

TURTLE is a Monte Carlo prograr? used to simulate beam 

line performance. It can produce histograms and scatter plots 

showing beam profiles and any distribution or correlation 

of any physical quantity. It also includes second-order and 

many higher-order term and aperture COnStraintS. 

The input deck is the same as that used for TPUSPORT. 

Three changes are required to make it into a deck for running 

TURTLE. First, the computer must be instructed to run TURTLE 

instead of TRANSPORT. Second, the TPXiSPORT indicator card 

indicating whether the problem is new or a continuation of an 

old problem is changed to the number of rays to be run through 

the system. Third, the histogram requests must be inserted. 

The transformations through'quadrupoles, sextupoles, and 

solenoids are done individually for each mosentum. The geometric 

effects on trajectories are limited to second order. For a 

general bending magnet, a second-order transformation in both 

chromatic and geometric effects is used. The pole face 

rotations with their accompanying fringe fields, and the body 

of the bending magnet are all included in a single second-order 

transformation. 

If the field gradient of a rpagnet is zero, then the 

trajectory of a particle through a magnet will be the arc of 

a circle. A rectangular magnet with a sample circular 

trajectory is shown in figure 6. If a is the bend angle of 
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a sector bendin? magnet, then the output coordinates expressed 

in term of the input coordinates are 

sin e1 = sin e. co* a - 
sin2Bosin a sina 

i + cos e. - x~ P j-+ sin a 

[ 

sin a(sin(Bo+u) + sin el) 

xr = xo co* a + cOs(eo+a) + cos al 
~1 

+ L sin u (sin 8 o + sin 6,) 

I 

sin a sin e1 - sin 8 

a (cOs(eo+a) + cos el) 1 + 1 + EOS CL cos el + cos e: 1 
cos e. ~b+eo-ell 

y1 = Y, + Y:, 
cos $eo+a+el) sin +b+eo-el) [ 

x,sin a i L y . 1 
(13) 

The quantity L is the length of the bend magnet, p the radius 

of curvature of the individual trajectory, and Bo the inverse 

tangent of x:. For a rectangular zero-gradient bending magnet, 

the effect of the pole face rotations is included via a second- 

order transfer matrix. Also for a rectangular bending magnet, 

the proper sagitta offset and corresponding aperture limitations 

can be calculated auto!natically. 

The effect of non-linearities in quadrupole fields may 

also be calculated automatically. The magnitude of the error 

field is represented by a multipole expansion 
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BX = 

m 

By = T Bno 
I 
E)n-l sin[(n-110 - CL 

n=l =\ n ] 

(14) 

The mathematical procedure for calculating the effect of the 

error field has been described e1sewhere.S Briefly, the 

trajectory is transformed to the longitudinal center of the 

quadrupole by an ordinary transfer matrix. At that point it 

is perturbed by an integral of the multipole field, where the 

strengths of the conponents are determined from the magnitude 

of the ray at the longitudinal midpoint. Then it is transformed 

to the end of the quadrupole. Multipoles up to the 40.-pole 

may be included. 

Replacable subroutines allow a variety of input phase 

space distributions, scattering distributions, slit shapes, and 

histogrammable variables. The normal phase space is rectangular 

in x vs. x' or y vs. y', but circular in x vs. y or x' vs. y'. 

It is also uniform in momentum. Alternate distributions 

representing particle production models have been used. 

Scattering may be introduced at any point in the beam 

line. The default distribution is the sane as for the input 

phase space. The subroutine producing the scattering may be 

replaced by one giving a Gaussian or other desired distribution. 

Slits of any size and shape can also be inserted anywhere 
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in the beam line. The program allows a slit in any of the 

trajectory coordinates. A replacable subroutine allows any 

other slit that can be formulated mathematically. This feature 

is useful in defining irregularly shaped apertures of magnets. 

Histograms and scatter plots of trajectory coordinates 

may also be produced. A histogram of the longitudinal position 

of beam loss is also available. keplacable subroutines allow 

calculation o,f any quantity which is related to the trajectory 

coordinates for inclusion in histograms or scatter plots. 

Examples miqht be kinematic variables associated with a particular 

reaction, the angle of a cone of Cerenkov light, or a reconstruction 

of an initial trajectory coordinate from chamber readings. The 

scatter plot may contain any two variables, which need not occur 

at the sare location in the beam line. 

Aistograms and scatter plots may be flagged. A trajectory 

coordinate will not be entered into the histogram unless the 

ray remains in the beam when the flag is encountered. This 

feature is especially useful for determining the effective 

acceptance of a beam line. 
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Element 

Initial beam ellipse 

Pole face rotation 

Drift space 

Send magnet 

Quadrupole 

Initial beam centroid shift 

Alignment tolerance 

Accelerator 

Arbitrary Matrix 

Initial floor coordinates 

BM sextupole components 

Sextupole 

Solenoid 

Coordinate rotation 

can vary 

All dinrznsions 

Angle of rotation 

Length 

Length I field, field gradient 

Length, pole tip field 

All dimensions 

All dimnSiOnS 

All e1enents 

All positions and angles 

strength 

Field 

Length, field 

Angle of rotation 

Table I. Physical and Variable TRANSPORT Elemnts 
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Zero'th Order 

lt3ta1 system length 

Floor coordinates -- three positions and three angles 

First Order 

Transfer matrix element -- R. 

Beam size in any coordinate 

Beam matrix elemnt -- oij 

Beam correlation matrix element -- r.. = aij/m 13 
First moments of the beam -- centroid 

Phase advance -- Trace of R matrix in one plane 

Second Order - 

Transfer matrix element - T.. Ilk 
Second order contributions to beam size in any c6ordinate 

Table II. Fitting Constraints 
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Figure Captions 

Fig. 1: A charged particle beam line, With the reference 

trajectory shown. 

Fig. 2: The local coordinate system for determining the 

local coordinates of a particle trajectory. 

Fig. 3: A two-dimensional beam phase ellipse. 

Fig. 4: Field boundaries for a general bending magnet. 

Fig. 5: Perfectly aligned and misaligned bending magnets. 

Fig. 6: A zero-gradient rectangular bending magnet. The 

reference trajectoq and another sample particle 

trajectory are shown. 
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